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Abstract

In recent years, there has been a burgeoning interest in mul-
timodal recommender systems within the recommendation
systems domain. These systems aim to understand user pref-
erences by leveraging both user interaction data and multi-
modal information associated with items. This approach fre-
quently results in superior recommendation accuracy com-
pared to traditional models that rely solely on user-item in-
teractions. Despite the advancements of these methods, there
is a relatively low utilization of image features in propagat-
ing item-item characteristics, an overreliance on text feature
similarity, and a frequent neglect of the deep relationships be-
tween items, users, and modalities. In response to these chal-
lenges, we introduce a novel model termed LLMs-EnhanceD
Hyper-KnOwledge Graph REcommender for Multimodal
Recommendation (DOGE). DOGE utilizes large language
models (LLMs) to understand image information under the
guidance of text information, generating cross-modal features
that effectively enhance the relationship between text and
image modalities. Subsequently, DOGE constructs a Hyper-
Knowledge Graph (HKG) using user-item interaction infor-
mation and modality features enhanced by large language
models. This graph encompasses a wide range of item-item
and user-user binary relations and hyper-relations, effectively
expanding the feature propagation mechanisms and mitigat-
ing the overreliance on text modality. By learning on het-
erogeneous user-item graphs and homogeneous item-item,
user-user graphs, DOGE enhances potential effective prop-
agation between item features and user features, acquiring
more effective feature representations of users and items.
Comprehensive experimentation across three public real-
world datasets illustrates that DOGE attains state-of-the-art
(SOTA) performance, exhibiting a 7.2% improvement over
the strongest baseline.

Introduction
As multimedia content rapidly expands, recommender sys-
tems have become essential for assisting users in discover-
ing personalized products and value chain partners. Leverag-
ing multimodal information, multimodal recommender sys-
tems (MRSs) have garnered considerable attention for ef-
fectively mitigating the data sparsity issues inherent in real-
world datasets.
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Figure 1: Illustrations of (a) Overreliance on text modality,
and (b) Strong correlation among items.

Early MRSs (Liu, Wu, and Wang 2017; Wei et al. 2021)
fuse multimodal features with item ID embeddings. Some
also apply attention mechanisms to model user preferences
(Chen et al. 2017, 2019; Liu et al. 2019). However, these
methods only capture low-order user-item interactions. The
capabilities of graph neural networks (GNNs) in model-
ing high-order semantics have propelled graph-based rec-
ommendation systems to the forefront of multimodal rec-
ommendation research. For instance, MMGCN (Wei et al.
2019) disaggregates multimodal features into multiple spa-
tial views and aggregates information within each space us-
ing graph convolutional networks (GCNs) to better model
user preferences. MGCN (Yu et al. 2023) introduces a
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这些系统旨在通过利用用户交互数据和与物品相关的多模态信息来理解用户偏好

图像特征在物品-物品特征传播中的利用率较低，过度依赖文本特征相似度，以及对物品、用户与模态之间深层关系的忽视

DOGE 模型利用大语言模型在文本信息引导下理解图像信息，生成跨模态特征，从而有效增强文本与图像模态之间的联系

DOGE 基于用户-物品交互信息及由大语言模型增强的模态特征，构建了一个超知识图



behavior-aware fuser to further model the importance of
different modal views of multimodal item features. More-
over, researchers have complemented user-item relations by
constructing auxiliary graph structures. For example, Du-
alGNN (Wang et al. 2021) builds a homogeneity graph
of users to improve recommendation performance. Further-
more, DRAGON (Zhou et al. 2023b) integrates user graph
and the frozen item graph (Zhou and Shen 2023), and learns
simultaneously on both the homogeneous graph and the het-
erogeneous user-item graph to obtain dual embeddings of
users and items, achieving optimal performance. In recent
years, due to the powerful semantic understanding capabil-
ities of large language models (LLMs), some researchers
have attempted to use LLMs to enhance side information.
For example, LLMRec(Wei et al. 2024) leverages LLMs to
generate user profiles, thereby enhancing user representa-
tion, and has made significant progress.

Despite these significant achievements, current MRSs still
face some limitations: (1) The significance of multimodal
side information is uneven. FREEDOM’s (Zhou and Shen
2023) hyper-parameter sensitivity study demonstrated that
with the increase in modality weight (the weight of the im-
age modality) in frozen item graph, the Recall@20 indicator
shows an overall downward trend. This indicates that item
features mainly learn along the side of higher text similar-
ity in the item homogeneous graph. As illustrated in Fig-
ure 1(a), items that are significantly more similar in the vi-
sual modality may be farther apart in the vector space due
to slight differences in the text modality. This shows that
the information from the image modality has not been ef-
fectively mined, and the relationship between text and im-
age pairs has not been adequately explored. Such over-
reliance may result in a decline in recommendation per-
formance due to missing or contaminated text features. (2)
Relying solely on the propagation of item similarity adja-
cency in the vector space of item features poses challenges
in fully addressing users’ diverse needs. The propagation
process of the homogeneous graph depends on the modal-
ity similarity of items. However, in the real world, even if
the modality similarity between item groups is not high,
there may still be strong associations between different item
groups, and these associations can be hyper-relational, as
shown in Figure 1(b). To address these issues, we propose an
LLMs-EnhanceD Hyper-KnOwledge Graph REcommender
for Multimodal Recommendation (DOGE). DOGE intro-
duces a method of constructing a LLMs-enhanced Hyper-
Knowledge Graph (HKG), effectively improving recom-
mendation performance in the multimodal domain. Specifi-
cally:

• Modality Enhancement Method Based on LLMs: We
propose a method to enhance modality relationships
using a multimodal LLM. First, we input images as
prompts to the multimodal LLM along with the corre-
sponding text information. Then, we treat the LLM as a
virtual knowledge base, utilizing it to understand image
features and output image cues to strengthen the connec-
tions between modalities.

• Construction of a HKG for Recommendation: By deeply

exploring the multi-dimensional relationships between
users and items, we construct a HKG for recommen-
dation. This graph extends multi-dimensional hyper-
relations based on the user-item interactions and modal-
ity views, effectively meeting the diverse needs of rec-
ommendations.

• Our method’s efficacy is demonstrated through tests con-
ducted on three real-world datasets available to the pub-
lic. Compared to the strongest baseline models, our
method shows an average improvement of 7.2%.

Related Work
Multi-Modal Recommendation
Compared to traditional collaborative filtering models (He
and McAuley 2016; Mao et al. 2021a; Papadakis et al.
2022), multimodal recommendation systems alleviate data
sparsity issues present in real datasets by leveraging abun-
dant multimodal information and user behaviors, effectively
enhancing recommendation performance and garnering con-
siderable attention (Wu et al. 2022a; Zhou et al. 2023a).
Early multimodal recommendation systems typically inte-
grate multimodal information into ordinary collaborative fil-
tering frameworks. For example, VBPR is the first model
to incorporate visual information (He and McAuley 2016).
However, these methods often struggle to capture high-
order features which are highly beneficial for enhancing rec-
ommendation effectiveness. As GNNs evolve rapidly, re-
searchers have attempted to apply GNNs to recommenda-
tion systems (Kipf and Welling 2016; Hu et al. 2019; Berg,
Kipf, and Welling 2017; Ying et al. 2018; Wang et al. 2019).
GCNs (Wu et al. 2022b; Mao et al. 2021b; Chen et al.
2020) have garnered significant attention among GNNs for
their capability to capture high-order semantic information
of users and items (Zhang et al. 2022; Wei et al. 2023).
LightGCN (He et al. 2020) retains only the neighborhood
aggregation part of GCN for collaborative filtering, simpli-
fying the structure to better suit recommendation scenarios.
MGCN proposes a behavior-aware fuser to adaptively learn
the importance of different modal features, comprehensively
modeling user preferences. Recently, some studies employ
auxiliary graphs to enhance user or item feature representa-
tions (Sun et al. 2019; Li et al. 2022; Sun et al. 2020). For
the user-item graph, FREEDOM introduces an edge prun-
ing technique to remove noise caused by unintended inter-
actions. DRAGON learns dual representations of items in
both heterogeneous and homogeneous graphs and employs
attention-concatenation fusion to combine multimodal fea-
tures, achieving optimal performance. To perceive compre-
hensive user interests, LGMRec (Guo et al. 2024) creates
local graph embeddings and global hypergraph embeddings
to learn local topological relations and global dependencies.

Recommendation System Enhanced by LLMs
With the rapid development of LLMs, an increasing num-
ber of LLM-powered recommendation systems have been
proposed. Benefiting from the strong semantic understand-
ing capabilities of LLMs, these methods effectively address
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Figure 2: The overall framework of DOGE. Multimodal features represent different modal item information input into DOGE.
User embeddings are randomly generated. The heterogeneous graph is used for feature propagation between users and items.
The frozen Hyper Knowledge Graph is used for multi-dimensional propagation of user-user and item-item graphs.

various challenges. LLM4RS (Dai et al. 2023) applies Chat-
GPT directly to recommendation systems, evaluating the us-
ability of large language models within such systems. LLM-
Rank (Hou et al. 2024) assists LLMs in making recommen-
dations by designing prompts and guiding strategies. When
multiple generators retrieve ranking candidates, zero-shot
LLMs challenge traditional recommendation models effec-
tively. Additionally, some researchers leverage information
generated by LLMs to enhance existing recommendation
models. For instance, OpenGraph (Xia, Kao, and Huang
2024) introduces a data augmentation mechanism by in-
corporating LLMs to mitigate data sparsity issues. LLM-
Rec (Wei et al. 2024) improves recommendation systems
through three LLM-based enhancement strategies, includ-
ing enhancing user-item interactions, user node information,
and item node information. It also develops a denoising data
mechanism to uphold the accuracy and reliability of aug-
mented data. To address potential noise and bias from im-
plicit feedback, the RLMRec (Ren et al. 2024) framework
enhances representation learning through LLMs. It com-
bines auxiliary text signals and cross-view alignment to im-
prove the representation quality and robustness of recom-
mendation systems.

Methodology
Problem Formulation
Assuming a given collection of users U , containing n users
u ∈ U , and a collection of items I, containing q items i ∈
I. Each item i has multiple modalities m ∈ M = {v, t},
where v represents the visual modality (i.e., images), and t
represents the text modality (i.e., natural language text). We
use pmi ∈ Rd×|I| and rmi ∈ Rdm×|I| to denote the em-
bedding and raw features of item i, and pmu ∈ Rd×|U| to
represent the preference features of user u in modality m,
where d and dm denote the embedding dimension and raw
features dimension, respectively. The historical behaviors of
users can be represented as R ∈ [0, 5]

|U|×|I|, where each
Ru,i = 0 indicates no interaction between the user and item,

otherwise it represents the satisfaction level of the user for
that item. Thus, the interaction data can be represented as an
interaction graph G = {N , E}, where N = {U ∪ I} rep-
resents the node set, and historical interactions Ru,i ̸= 0
are considered as the set of edges E in the graph. In this pa-
per, an additional semantic modality s generated by LLMs
is also introduced, denoted as m′ ∈ M′ = {v, t, s}.

Semantic Relationship Enhanced Feature
Generation

To maximize the use of text and image features and reduce
the potential risk of depending too heavily on text modality
during homogeneous graph propagation, we propose seman-
tic relationship enhanced features. We ingeniously design
a prompt to describe the visual and textual features of the
products to a multimodal LLM (Liu et al. 2024; Bavishi et al.
2023). Specifically, the product’s image is first divided into
multiple image patches, each representing a part of the over-
all information. These patches are projected onto the front
part of the prompt to provide information about the products
in the image. Then, semantic information is generated by the
LLM:

s = SentenceTransformer(LLM(image, text)). (1)

The prompt is designed as “[{image} : Could you please
introduce the characteristics of the {task name} products in
the image? And explain their potential uses and what items
can be used together. The item title is {item title}.]”, where
{·} denote different contents injected based on the task. The
text information is combined with the image information by
the prompt. Then, the low-information-density raw visual
features of the items in the image are transformed into high-
information-density semantic features through multi-layer
transformers guided by the text information. These semantic
features contain both textual and visual information, serving
as an additional layer of information that significantly rein-
forces the interaction between textual and visual modalities.
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嵌入特征和原始特征

偏好特征

由大语言模型（LLMs）生成的额外语义模态

将图像中低信息密度的原始视觉特征转换为高信息密度的语义特征

这些语义特征包含了文本和视觉信息，作为一个额外的信息层，显著加强了文本和视觉模态之间的交互



Constructing Hyper-Knowledge Graph
To better enhance the relationships between items, we con-
struct a frozen graph that enhances item relationships. We
partly adopt the approach of FREEDOM (Zhou and Shen
2023), which calculates the similarity between the original
features of each item i in each modality m ∈ M and con-
structs adjacency relationships with the top-K similar nodes,
forming a modality-aware item-item similarity score graph
Gm = { I, Em}, where Em =

{
cmi,i′ |i, i′ ∈ I

}
. Specifically,

for each pair of items (i, i′), we use cosine similarity to cal-
culate the similarity score cmi,i′ between items i and i′ in
modality m. Similarly, for the semantic modality generated
by the LLM, we also construct a semantic similarity graph
Gs as:

cmi,i′ =
(rmi )

⊤
rmi′

∥rmi ∥ ∥rmi′ ∥
, csi,i′ =

(rsi )
⊤
rsi′

∥rsi ∥ ∥rsi′∥
, (2)

where cmi,i′ and csi,i′ can be represented by cm
′

i,i′ , which is seen
as the weight of edges in a fully connected graph. To sparsify
this graph, we retain the top-K similar items. Specifically,
for each modality in m′, if i′ is among the top-K similar
items, we retain the relationship between i and i′ to preserve
the foundational structure of the most related items:

cm
′

i,i′ =

{
1, if cm

′

i,i′ ∈ top-K(cm
′

i ),

0, otherwise.
(3)

To capture the semantic relationships among frequently
co-occurring items, we construct two homogeneous graphs:
an item co-occurrence graph Gi = {I, Ei} and a hyper-
relational graph Ghi = {I, Ehi}. We begin by defining an
item-item co-occurrence matrix Aco, in which each element
acoi,i′ represents the frequency with which items i and i′ have
been jointly interacted with by the same user. To alleviate
the influence of noise and retain salient relational informa-
tion, we employ a top-K sparsification strategy. Specifically,
for each item i, we identify the top-K items most frequently
co-occurring with it, based on its corresponding row acoi :

ãcoi,i′ =

{
1, if acoi,i′ ∈ top-K(acoi ),

0, otherwise.
(4)

As a result, the edge set of the co-occurrence graph is given
by Ei = {(i, i′) | i, i′ ∈ I, ãcoi,i′ > 0}.

For the hyper-relational graph, we consider all items inter-
acted with by a single user as forming a hyperedge. The set
of hyperedges is denoted as Ehe = {ehe1 , ehe2 , . . . , ehek } con-
taining k hyperedges, where each hyperedge ehe includes
h items. In this work, we focus only on hyperedges where
h > 2. For each subset of Ehe, we construct its power set:

H = {(ep, w(ep)) | ep ∈ P(ehe), ∀ehe ∈ Ehe}, (5)

where P(·) represents the power set operation, w repre-
sents the frequency of ep. We limit the subset size and fre-
quency in the power set to avoid overly complex computa-
tions. To simplify the propagation process, we define a hy-
pergraph matrix H∗ ∈ {0, 1}|I|×|H|. If item i belongs to
the j-th hyperedge epj in H, we set its element h∗

ij to 1. We

directly obtain the adjacency matrix of the hyperedges as:
Ahi = H∗ · H∗⊤. Next, we sparsify this matrix as follows:

ahii,i′ =

{
1, if ahii,i′ ∈ top-K(ahii )

0, otherwise.
(6)

Finally, we define the hyper-relational edge set as Ehi =
{(i, i′) | i, i′ ∈ I, ahii,i′ > 0}.

As the item-item relationships are enhanced, the original
two item relationship graphs are expanded into five types of
item-item relationships r ∈ R = {v, t, s, i, hi}. To allevi-
ate the problem of gradient explosion, we perform matrix
normalization on the adjacency matrix Ar of each graph Gr

as: Ãr = D− 1
2ArD

− 1
2 , where D is the diagonal matrix

of R|I|×|I|. Based on the multi-item relationship graph ob-
tained using the above method, we aggregate the propaga-
tion paths of each relationship graph through weighted sum-
mation to construct the overall item relationship adjacency
matrix as: ÂR =

∑
r∈R αrÃr.

We construct a user similarity graph Gu = {U , Eu}, where
Eu = {cu,u′|u, u′ ∈ U} represents the edges between users
u and u′, and the edge values denote user similarity. The
similarity is calculated as follows:

cu,u′ =
∑Nu,u′

k=1

1

1 +
∣∣rku − rku′

∣∣ , (7)

where Nu,u′ represents the number of items that users u and
u′ interact with together, and rku represents the rating of user
u for the k-th item. For each user, we retain the top-K users
with the highest similarity cu,u′ :

cu,u′ =

{
cu,u′ , if cu,u′ ∈ top-K(cu),

0, otherwise.
(8)

Propagating on Homogeneous and Heterogeneous
Graphs
To capture representations of users and items across multiple
modalities in heterogeneous graphs, we adopt the represen-
tation learning approach of LightGCN (He et al. 2020) to
train our user-item graph G as:(

pm
′

u

)(k+1)

=
∑
i∈Nu

1√
|Nu|

√
|Ni|

(
pm

′

i

)(k)

,

(
pm

′

i

)(k+1)

=
∑
u∈Ni

1√
|Ni|

√
|Nu|

(
pm

′

u

)(k)

,

(9)

where pm
′

u is randomly initialized, and pm
′

i represents a mul-
timodal feature based on the pre-trained model embedding.
Nu and Ni represent the 1-hop neighbors of u and i respec-
tively. After K layers of data propagation, the user and item
feature representations are obtained as:

pm
′

u =
K∑

k=0

(
pm

′

u

)(k)

, pm
′

i =
K∑

k=0

(
pm

′

i

)(k)

. (10)

We adopt attention-based concatenation (Zhou et al.
2023b) to integrate the features learned from the heteroge-
neous graph:

urep = (WAtt)
⊤ ⊙ [pvu : psu : ptu], irep = [pvi : psi : p

t
i],
(11)
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原始特征之间的相似度，来构建与最相似的 Top-K 节点的邻接关系，形成一个模态感知的物品-物品相似度图

为了稀疏化该图，我们仅保留每个物品与 Top-K 相似物品之间的边

物品共现图

超关系图

被同一用户共同交互的次数

为了缓解噪声的影响并保留显著的关系信息，我们采用了 Top-K 稀疏化策略

对于每个物品 𝑖，保留与之共现次数最多的 Top-K 物品

在超关系图中，我们认为单个用户交互过的所有物品形成一个超边

对每条超边进行幂集变换

表示该子集的出现频率



where WAtt is a learnable parameter, ⊙ represents element-
wise multiplication.

In the homogeneous user-user graph, we utilize an atten-
tion method to aggregate the neighboring nodes of users and
obtain fu (Wang et al. 2021). For the homogeneous item-
item graph, we employ an item feature propagation layer for
feature propagation as:

f
(k+1)
i =

∑
i′∈Ni

ÂRf
k
i′ , (12)

where Ni is the set of neighbors of item i, R represents the
5 types of item-item relationships mentioned above, and f0

u ,
f0
i represent the fused results of users urep and items irep.

Then, we add the results propagated from the user-user
and item-item homogeneous graphs to the results aggregated
from the heterogeneous graph, obtaining the final user rep-
resentation u

′

rep and item representation i
′

rep:

u
′

rep = urep + fu, i
′

rep = irep + fi, (13)

where fu and fi are the final results output from the user and
item homogeneous graphs respectively.

Optimization
The model parameters are optimized using the Bayesian Per-
sonalized Ranking (BPR) loss (Rendle et al. 2012):

L =
∑

u,i+,i−∈D

(− lnσ(zu,i+ − zu,i−)) + β ∥Θ∥22 , (14)

where zu,i = u
′

rep · i′rep
⊤

each triplet (u, i+, i−) satisfies
(u, i+) ∈ E , (u, i−) /∈ E . β denotes the L2 regularization
coefficient, and Θ represents the model parameters.

Experiment Detail
Dataset
To evaluate the effectiveness of our proposed model, we per-
form extensive experiments on real-world Amazon datasets
(McAuley et al. 2015). For a deeper analysis of the model’s
performance in handling larger datasets with sparser data,
we select the Baby, Home and Kitchen, and Electronics
datasets which we refer to as Baby, Kitchen and Electron-
ics. For each dataset, we utilize the 5-core setting to ensure
that each item or user is associated with at least 5 inter-
actions. Following the data generation method in MMRec
(Zhou 2023), We utilize pre-trained sentence-transformers
(Reimers and Gurevych 2019) to convert text and semantic
features into model-usable vectors, with a dimension of 384,
and utilize the published original visual features with a di-
mension of 4096. The statistics of the data are summarized
in the Table 1.

Evaluation Metrics
Following prior settings, we divide historical interactions
into training, validation, and test sets using an 8:1:1 ratio. To
assess top-K recommendation performance, we apply two
standard evaluation metrics: R@k (Recall) and N@k (Nor-
malized Discounted Cumulative Gain), where k is calculated
for both 10 and 20, reporting the average results for users.

Dataset Users Items Interactions Sparsity

Baby 19445 7050 160792 99.88%
Kitchen 66519 28237 551682 99.97%
Electronics 192403 63001 1689188 99.98%

Table 1: Statistical overview of the datasets.

Baselines
To evaluate the effectiveness of our proposed model, we
compare DOGE with other baselines. The first category is
the most popular GCN-based method, and the second cate-
gory comprises 12 multimodal recommendation models, in-
cluding the current SOTA models.

i) General Model:
• LightGCN (He et al. 2020), a popular GCN-based

method, simplifies GCN modules for recommendation.

ii) Multimedia Models:
• VBPR (He and McAuley 2016), a classic multimodal

recommendation method, integrates visual and ID em-
beddings of each item for representation.

• MMGCN (Wei et al. 2019) fuses representations from
multiple modalities of items for recommendation.

• DualGNN (Wang et al. 2021) build a user graph from the
user-item interaction to enhance user representations.

• GRCN (Wei et al. 2020) enhances previous models by
filtering out false-positive interactions.

• LATTICE (Zhang et al. 2021) establishes item-item
graphs to enhance item representations.

• SLMRec (Tao et al. 2022) proposes three data augmenta-
tion methods and introduces self-supervised learning into
multimodal recommendation.

• BM3 (Zhou et al. 2023c) perturbs representations
through a dropout mechanism without requiring ran-
domly sampled negative examples.

• MICRO (Zhang et al. 2022) extends LATTICE by learn-
ing item-item graphs from multimodal features.

• FREEDOM (Zhou and Shen 2023) denoises the user-
item interaction, and makes the modality graph freezing.

• MGCN (Yu et al. 2023) purifies item modal features and
adaptively learns the importance of different modalities.

• DRAGON (Zhou et al. 2023b) learns dual representa-
tions of users and items, and integrates multimodal fea-
tures using attention concatenation.

• LGMRec (Guo et al. 2024) combines local graph pro-
cessing and global hypergraph processing to improve
recommendation accuracy and robustness.

Parameter Settings
We implement our proposed model using PyTorch within
the MMRec (Zhou 2023) framework, setting the user and
item embedding dimensions for all models to 64. Model
parameters are initialized with the Xavier method (Glorot
and Bengio 2010), employed the Adam optimizer (Kingma
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Dataset Baby Kitchen Electronics

Metrics R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

LightGCN(SIGIR’20) 0.0479 0.0754 0.0257 0.0328 0.0315 0.0452 0.0173 0.0209 0.0363 0.054 0.0204 0.025

VBPR(AAAI’16) 0.0423 0.0663 0.0223 0.0284 0.0248 0.0367 0.014 0.017 0.0293 0.0458 0.0159 0.0202
MMGCN(MM’19) 0.0378 0.0615 0.02 0.0261 0.0172 0.0284 0.0086 0.0115 0.0213 0.0343 0.0112 0.0146
DualGNN(TMM’21) 0.0448 0.0716 0.024 0.0309 0.0299 0.0434 0.0165 0.02 0.0363 0.0541 0.0202 0.0248
GRCN(MM’20) 0.0539 0.0833 0.0288 0.0363 0.0349 0.0505 0.0195 0.0235 0.0349 0.0529 0.0195 0.0241
LATTICE(MM’21) 0.0547 0.085 0.0292 0.037 — — — — — — — —
SLMRec(TMM’22) 0.054 0.081 0.0285 0.0357 0.0352 0.0515 0.0196 0.0238 0.0443 0.0651 0.0249 0.0303
BM3(WWW’23) 0.0564 0.0883 0.0301 0.0383 0.0312 0.0462 0.0173 0.0212 0.0437 0.0648 0.0247 0.0302
MICRO(TKDE’22) 0.0584 0.0929 0.0318 0.0407 — — — — — — — —
FREEDOM(MM’23) 0.0627 0.0992 0.033 0.0424 0.04 0.0584 0.0225 0.0273 0.0396 0.0601 0.022 0.0273
MGCN(MM’23) 0.062 0.0964 0.0339 0.0427 0.0405 0.0593 0.023 0.0279 0.0433 0.0639 0.0242 0.0295
DRAGON(ECAI’23) 0.0662 0.1021 0.0345 0.0435 0.045 0.0655 0.0251 0.0304 0.045 0.0678 0.025 0.0309
LGMRec(AAAI’24) 0.0644 0.1002 0.0349 0.044 0.0425 0.0628 0.0239 0.0292 0.0440 0.0665 0.0244 0.0303

DOGE†(Our method) 0.0715 0.1098 0.0390 0.0486 0.0463 0.0672 0.026 0.0315 0.0471 0.0701 0.0265 0.0325
DOGE(Our method) 0.0719 0.11 0.0391 0.0489 0.0465 0.0677 0.0264 0.0319 0.0481 0.0718 0.027 0.0331
improv. 8.61% 7.71% 12.03% 11.13% 3.33% 3.35% 5.17% 4.93% 6.88% 5.89% 8% 7.11%

Table 2: Performance of DOGE and baseline models on three datasets, with the best results indicated in bold, second best
results indicated with underline, and “improv.”indicating the percentage improvement of DOGE over the best baseline model.
“—”indicates the model cannot be trained on a single GeForce RTX 4090 24GB. † indicates that, like the baseline model,
DOGE do not use rating information to construct the user graph but relies solely on implicit feedback data.

and Ba 2014), and set the batch size to 2048. We construct
a hyperparameter grid for learning rate and regularization
weight, with values ranging from {1e-1, 1e-2, 1e-3, 1e4}
for both, resulting in 16 parameter combinations. Addition-
ally, when the learning rate and regularization weight are
determined to be optimal, we conduct a grid search for the
importance score αr′ of non-text weights in the item-item
graph, varying from 0.1 to 0.9 in increments of 0.1, where
r
′ ∈ R

′
= R − {t}. We fix the layers of our heterogeneous

graph at 2 and the layers of our homogeneous graph at 1. The
top-K is set to 40 for the user graph, and for the item graph
Gr, K is set to 10. We establish 1000 epochs as the upper
limit for training, employing early stopping after 20 epochs,
driven by the R@20 measure. Model training is conducted
using an RTX 4090 GPU equipped with 24GB of memory.
We follow all settings and hyperparameter strategies from
the baseline papers, striving to ensure that baseline models
performed at their strongest.

Experiment Result
Overall Performance
We compare the currently SOTA methods with our proposed
model, and the results are shown in Table 2. The following
conclusions are drawn: (1) The introduction of additional
effective information can significantly improve recommen-
dation performance. Models such as GRCN, LATTICE, and
the current SOTA multimodal methods show significant im-
provements over the most popular general model, Light-
GCN. However, these methods tend to overlook the seman-
tic information expressed in the image modality. We intro-
duce semantic modality features generated by LLMs by pro-

jecting image information into prompts and combining them
with the text modality of products. This effectively enhances
the text-visual modality relationship, enabling the effective
expression of multimodal information, ultimately resulting
in the best outcomes. (2) The HKG enables effective fea-
ture propagation between nodes. Compared to other mod-
els, DualGNN and DRAGON, which construct user auxil-
iary graphs, have shown superior performance. Therefore,
we believe that mining and utilizing node relationships in
homogeneous graphs can effectively enhance model perfor-
mance. Based on this idea, we construct a hyper-knowledge
graph. The results show that DOGE performs excellently on
small, medium, and large datasets. Our method improves by
an average of 9.9% over LGMRec and by an average of 7.2%
over the optimal baseline method DRAGON on all datasets.

Ablation Study
We evaluate the contribution of each component to improv-
ing recommendation performance. Specifically, we decouple
the DOGE model and conduct experiments by sequentially
removing the semantic modality features and HKG compo-
nents. We compare these variants with the strongest base-
line, DRAGON, and set up two variants:
• DOGEw/o s: We remove the semantic modality enhance-

ment, and the item modality features consist of textual
and visual parts.

• DOGEw/o HKG: We remove the HKG. Items propagate
based on the direction of similarity between text and im-
age modalities, with a text-to-image weight ratio of 9:1.

Figure 3 records the R@20 and N@20 of these variants on
three datasets, indicating that all components significantly
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Figure 3: Performance evaluation of various DOGE model
variants.

contribute to the final model. (1) In all datasets, the re-
moval of either the semantic modality or HKG led to a
drop in model performance. Thus, we believe both mod-
ules positively contribute to enhancing the model’s perfor-
mance. (2) The removal of HKG has the greatest impact on
Electronics. This is because Electronics has a higher spar-
sity, and the new paths brought by item relationship en-
hancement can guide effective propagation of item features,
increasing the affinity of features for semantically similar
items and thereby improving recommendation effectiveness
more significantly. (3) The fact that DOGEw/o s performs the
worst among the variants indicates that the effect of seman-
tic modality enhancement is most pronounced in the Kitchen
dataset. We believe this is because the product features in the
Kitchen dataset have lower data quality in the text modal-
ity, and the image modality struggles to effectively represent
product features. Therefore, the addition of semantic modal-
ities effectively enhances recommendation effectiveness.

Effect of Learning Rate and Regularization Weight
We set the regularization weights and learning rates for
DOGE within the range of {1e-1, 1e-2, 1e-3, 1e-4}. Fig-
ure 4(a), Figure4(b), and Figure4(c) respectively show the
model’s performance under different learning rate and reg-
ularization configurations on the three datasets measured by
R@20 and N@20. We observe that higher learning rates
increase the model’s sensitivity to regularization weights,
whereas lower learning rates reduce this sensitivity, whereas
when the learning rate is reduced, the sensitivity decreases.
The model performs strongly across all datasets when the
learning rate is set to 1e-4, and under the same learning
rate, the performance variations among different regulariza-
tion weights are relatively modest. The experimental results
across different parameter configurations are smooth, con-
firming the strong recommendation performance of DOGE
is not influenced by random processes during training.

Effect of Different Modal Proportions
To investigate the impact of different modalities on recom-
mendation performance, we adjust the proportions of differ-
ent modalities under the same conditions and observed their
R@20 and N@20. The experimental results are shown in the
Figure 5. In the figure, αr′ represents the sum of the propor-
tion of non-text modalities in the propagation process of the
homogeneous graph. It is observed that as αr′ increases, the
two evaluation metrics in all three datasets initially increase

(a) Baby

(b) Kitchen

(c) Electronics

Figure 4: The performance of DOGE across different learn-
ing rates and regularization weights on the Baby, Kitchen,
and Electronics datasets.

Figure 5: Relationship between αr′ ratio and DOGE perfor-
mance in item homogeneous graphs.

and then decrease, reaching optimal performance at αr′ =
{0.4, 0.6}, which effectively highlights the increased con-
tribution of the visual and semantic modality. Furthermore,
during the decline, no precipitous drop occurred, and the
model’s performance remained very stable. This indicates
that we effectively reduced the dependence of recommenda-
tion performance on text modality on the item homogeneous
graph.

Conclusion
We propose a DOGE recommender for multimodal recom-
mendation. Specifically, we leverage a LLM to understand
the image and text information of items, generating a se-
mantic modality. The semantic modality strengthens the re-
lationship between the image modality and the text modal-
ity. Then, we construct a HKG to explore the connections
between nodes to address the issue of over-reliance on text
modality in item homogeneous graphs present in many mul-
timodal recommendation models. Finally, we utilize three
datasets from Amazon to conduct extensive experiments.
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